Our approach to Mendelian Randomization (MR) analysis is designed to increase reproducibility of causal effect "discoveries" by: (i) using a Bayesian approach to inference; (ii) replacing the point null hypothesis with a region of practical equivalence consisting of values of negligible magnitude for the effect of interest, while exploiting the ability of Bayesian analysis to quantify the evidence of the effect falling inside/outside the region; (iii) rejecting the usual binary decision logic in favour of a ternary logic where the hypothesis test may result in either an acceptance or a rejection of the null, while also accommodating an "uncertain" outcome. We present an approach to calibration of the proposed method via loss function, which we use to compare our approach with a frequentist one. We illustrate the method with the aid of a study of the causal effect of obesity on risk of juvenile myocardial infarction.


翻译:我们的门德利随机化(MR)分析方法旨在通过以下方式提高因果关系“发现”的可复制性:(一) 采用巴耶斯式的推理方法;(二) 以一个实际等值区域取代无效假设点,这个区域由利息效应的微小数值组成,同时利用巴耶斯式的分析能力量化区域内/外影响的证据;(三) 拒绝通常的二进制决定逻辑,赞成一种长期逻辑,即假设测试可能导致接受或拒绝无效,同时顾及“不确定”的结果;我们提出一种通过损失函数校准拟议方法的方法的方法,我们用这个方法来比较我们的方法与经常现象的方法;我们用研究肥胖对青少年心肌梗塞风险的因果关系的方法来说明这一方法。

0
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月4日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员