The Kibble-Zurek mechanism (KZM) captures the essential physics of nonequilibrium quantum phase transitions with symmetry breaking. KZM predicts an universal scaling power law for the defect density which is fully determined by the system's critical exponents at equilibrium and the quenching rate. In this work, we numerically tested the KZM predictions for the simplest quantum case, a single qubit under the Landau-Zener evolution, on an open access IBM quantum computer (IBM-Q). We report on extensive IBM-Q experiments on individual qubits embedded in different circuit environments and topologies, separately elucidating the role of qubit degree of isolation and the increasing decoherence effects associated with the quantum circuit depth. Our results confirm that the increasing of the circuit depth acts as a decoherence source, producing a rapid depart of the experiment data from the theoretical unitary prediction, since the gates errors accumulate.
翻译:KOBT- Zurek 机制( KZM) 捕捉了无平衡量级转换与对称断裂的基本物理。 KZM 预测了系统在平衡和电解速率上的关键指数所完全决定的缺陷密度的普遍缩放功率法。 在这项工作中, 我们用数字测试了KZM 预测的简单量子( Landau-Zener 进化下的一个单一qubit), 在开放存取 IBM 量级计算机( IBM-Q ) 上。 我们报告了一个广泛IBM-Q 实验, 实验内容是嵌入不同电路环境和地形的个体qubit, 分别说明了Qqubit 隔离度的作用以及与量子电路深度相关的日益增大的脱色效应。 我们的结果证实, 电路深度的增大是一个解色源, 使得实验数据从理论统一预测中迅速偏离, 因为门错误不断累积。