This paper considers a two-step fourth-order modified explicit Euler/Crank-Nicolson numerical method for solving the time-variable fractional mobile-immobile advection-dispersion model subjects to suitable initial and boundary conditions. Both stability and error estimates of the new approach are deeply analyzed in the $L^{\infty}(0,T;L^{2})$-norm. The theoretical studies show that the proposed technique is unconditionally stable with convergence of order $O(k+h^{4})$, where $h$ and $k$ are space step and time step, respectively. This result indicate that the two-step fourth-order formulation is more efficient than a broad range of numerical schemes widely studied in the literature for the considered problem. Numerical experiments are performed to verify the unconditional stability and convergence rate of the developed algorithm.


翻译:本文件考虑了一种经过两步四级修改的明确的Euler/Crank-Nicolson数字方法,用于根据适当的初始条件和边界条件解决时间可变的移动-移动消化-分散模型主题,新办法的稳定性和误差估计均在$L ⁇ infty}(0,T;L ⁇ 2})$-norm中进行深入分析。理论研究表明,拟议的技术无条件稳定,与O(k+h ⁇ 4})o(k+h ⁇ 4})ocolson(美元)ocolent)o(美元)col-ocolson)cold(美元)colental(美元)color)o(美元)colum(美元)为空间步骤和时间步骤。这一结果表明,两步四阶四级配制比文献中广泛研究的关于所考虑的问题的广泛数字方案更有效。进行了数字实验,以核查发达算法的无条件稳定和趋同率。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员