Bayesian optimization (BO) is a powerful tool for seeking the global optimum of black-box functions. While evaluations of the black-box functions can be highly costly, it is desirable to reduce the use of expensive labeled data. For the first time, we introduce a teacher-student model to exploit semi-supervised learning that can make use of large amounts of unlabelled data under the context of BO. Importantly, we show that the selection of the validation and unlabeled data is key to the performance of BO. To optimize the sampling of unlabeled data, we employ a black-box parameterized sampling distribution optimized as part of the employed bi-level optimization framework. Taking one step further, we demonstrate that the performance of BO can be further improved by selecting unlabeled data from a dynamically fitted extreme value distribution. Our BO method operates in a learned latent space with reduced dimensionality, making it scalable to high-dimensional problems. The proposed approach outperforms significantly the existing BO methods on several synthetic and real-world optimization tasks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月18日
Arxiv
0+阅读 · 2023年6月16日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
Arxiv
0+阅读 · 2023年6月18日
Arxiv
0+阅读 · 2023年6月16日
Arxiv
23+阅读 · 2022年2月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员