By 2050, a quarter of the US population will be over the age of 65 with greater than a 40% risk of developing life-altering neuromusculoskeletal pathologies. The potential of wearables, such as Apple AirPods and hearing aids, to provide personalized preventative and predictive health monitoring outside of the clinic is nascent, but large quantities of open-ended data that capture movement in the physical world now exist. Algorithms that leverage existing wearable technology to detect subtle changes to walking mechanics, an early indicator of neuromusculoskeletal pathology, have successfully been developed to determine population-level statistics, but individual-level variability is more difficult to parse from population-level data. Like genetic sequencing, the individual's gait pattern can be discerned by decomposing the movement signal into its fundamental features from which we can detect "mutations" or changes to the pattern that are early indicators of pathology - movement-based biomarkers. We have developed a novel approach to quantify "normal baseline movement" at an individual level, combining methods from gait laboratories with methods used to characterize stellar oscillations. We tested our approach by asking participants to complete an outdoor circuit while wearing a pair of AirPods, using orthopaedic braces to simulate pathology. We found that the novel features we propose are sensitive enough to distinguish between normal walking and brace walking at the population level and at the individual level in all sensor directions (both p $<$ 0.05). We also perform principal component analysis on our population-level and individual-level models, and find significant differences between individuals as well as between the overall population model and most individuals. We also demonstrate the potential of these gait features in deep learning applications.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
29+阅读 · 2022年1月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员