Wave propagation problems are typically formulated as partial differential equations (PDEs) on unbounded domains to be solved. The classical approach to solving such problems involves truncating them to problems on bounded domains by designing the artificial boundary conditions or perfectly matched layers, which typically require significant effort, and the presence of nonlinearity in the equation makes such designs even more challenging. Emerging deep learning-based methods for solving PDEs, with the physics-informed neural networks (PINNs) method as a representative, still face significant challenges when directly used to solve PDEs on unbounded domains. Calculations performed in a bounded domain of interest without imposing boundary constraints can lead to a lack of unique solutions thus causing the failure of PINNs. In light of this, this paper proposes a novel and effective operator learning-based method for solving PDEs on unbounded domains. The key idea behind this method is to generate high-quality training data. Specifically, we construct a family of approximate analytical solutions to the target PDE based on its initial condition and source term. Then, using these constructed data comprising exact solutions, initial conditions, and source terms, we train an operator learning model called MIONet, which is capable of handling multiple inputs, to learn the mapping from the initial condition and source term to the PDE solution on a bounded domain of interest. Finally, we utilize the generalization ability of this model to predict the solution of the target PDE. The effectiveness of this method is exemplified by solving the wave equation and the Schrodinger equation defined on unbounded domains. More importantly, the proposed method can deal with nonlinear problems, which has been demonstrated by solving Burger's equation and Korteweg-de Vries (KdV) equation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员