Distribution shifts, which often occur in the real world, degrade the accuracy of deep learning systems, and thus improving robustness to distribution shifts is essential for practical applications. To improve robustness, we study an image enhancement method that generates recognition-friendly images without retraining the recognition model. We propose a novel image enhancement method, DynTTA, which is based on differentiable data augmentation techniques and generates a blended image from many augmented images to improve the recognition accuracy under distribution shifts. In addition to standard data augmentations, DynTTA also incorporates deep neural network-based image transformation, further improving the robustness. Because DynTTA is composed of differentiable functions, it can be directly trained with the classification loss of the recognition model. In experiments with widely used image recognition datasets using various classification models, DynTTA improves the robustness with almost no reduction in classification accuracy for clean images, thus outperforming the existing methods. Furthermore, the results show that robustness is significantly improved by estimating the training-time augmentations for distribution-shifted datasets using DynTTA and retraining the recognition model with the estimated augmentations. DynTTA is a promising approach for applications that require both clean accuracy and robustness. Our code is available at \url{https://github.com/s-enmt/DynTTA}.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年12月2日
Robust Multi-Model Subset Selection
Arxiv
0+阅读 · 2024年11月28日
Arxiv
0+阅读 · 2024年11月26日
Arxiv
29+阅读 · 2022年3月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年12月2日
Robust Multi-Model Subset Selection
Arxiv
0+阅读 · 2024年11月28日
Arxiv
0+阅读 · 2024年11月26日
Arxiv
29+阅读 · 2022年3月28日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员