Data association is a knotty problem for 2D Multiple Object Tracking due to the object occlusion. However, in 3D space, data association is not so hard. Only with a 3D Kalman Filter, the online object tracker can associate the detections from LiDAR. In this paper, we rethink the data association in 2D MOT and utilize the 3D object representation to separate each object in the feature space. Unlike the existing depth-based MOT methods, the 3D object representation can be jointly learned with the object association module. Besides, the object's 3D representation is learned from the video and supervised by the 2D tracking labels without additional manual annotations from LiDAR or pretrained depth estimator. With 3D object representation learning from Pseudo 3D object labels in monocular videos, we propose a new 2D MOT paradigm, called P3DTrack. Extensive experiments show the effectiveness of our method. We achieve new state-of-the-art performance on the large-scale Waymo Open Dataset.


翻译:暂无翻译

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
专知会员服务
32+阅读 · 2021年6月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员