Oral cancer has more than 83% survival rate if detected in its early stages, however, only 29% of cases are currently detected early. Deep learning techniques can detect patterns of oral cancer cells and can aid in its early detection. In this work, we present the first results of neural networks for oral cancer detection using microscopic images. We compare numerous state-of-the-art models via transfer learning approach and collect and release an augmented dataset of high-quality microscopic images of oral cancer. We present a comprehensive study of different models and report their performance on this type of data. Overall, we obtain a 10-15% absolute improvement with transfer learning methods compared to a simple Convolutional Neural Network baseline. Ablation studies show the added benefit of data augmentation techniques with finetuning for this task.


翻译:口腔癌如果在早期检测到,其存活率超过83%以上,但是,目前只有29%的病例得到早期检测。深层学习技术可以检测口腔癌细胞的模式,有助于早期检测。在这项工作中,我们展示了使用微型图像进行口腔癌检测的神经网络的第一批结果。我们通过转移学习方法比较了许多最先进的模型,并收集和发布大量高质量的口腔癌微科图像的强化数据集。我们展示了对不同模型的全面研究,并报告了这类数据的业绩。总的来说,我们获得了10-15%的绝对改进,与简单的革命神经网络基线相比,我们获得了转移学习方法的绝对改进。吸收研究显示数据增强技术的附加效益,并对这一任务进行了微调。

0
下载
关闭预览

相关内容

迁移学习(Transfer Learning)是一种机器学习方法,是把一个领域(即源领域)的知识,迁移到另外一个领域(即目标领域),使得目标领域能够取得更好的学习效果。迁移学习(TL)是机器学习(ML)中的一个研究问题,着重于存储在解决一个问题时获得的知识并将其应用于另一个但相关的问题。例如,在学习识别汽车时获得的知识可以在尝试识别卡车时应用。尽管这两个领域之间的正式联系是有限的,但这一领域的研究与心理学文献关于学习转移的悠久历史有关。从实践的角度来看,为学习新任务而重用或转移先前学习的任务中的信息可能会显着提高强化学习代理的样本效率。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
97+阅读 · 2020年5月31日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
6+阅读 · 2018年1月14日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
97+阅读 · 2020年5月31日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员