The state of the art and de facto standard for differentially private machine learning (ML) is differentially private stochastic gradient descent (DPSGD). Yet, the method is inherently wasteful. By adding noise to every gradient, it diminishes the overall privacy with every gradient step. Despite 15 years of fruitful research advancing the composition theorems, sub-sampling methods, and implementation techniques, adequate accuracy and privacy is often unattainable with current private ML methods. Meanwhile, the Exponential Mechanism (ExpM), designed for private optimization, has been historically sidelined from privately training modern ML algorithms primarily because ExpM requires sampling from a historically intractable density. Despite the recent discovery of Normalizing Flow models (NFs), expressive deep networks for approximating intractable distributions, ExpM remains in the background. Our position is that leveraging NFs to circumvent historic obstructions of ExpM is a potentially transformational solution for differentially private ML worth attention. We introduce a new training method, ExpM+NF, as a potential alternative to DPSGD, and we provide experiment with logistic regression and a modern deep learning model to test whether training via ExpM+NF is viable with "good" privacy parameters. Under the assumption that the NF output distribution is the ExpM distribution, we are able to achieve $\varepsilon$ a low as $1\mathrm{e}{-3}$ -- three orders of magnitude stronger privacy with similar accuracy. This work outlines a new avenue for advancing differentially private ML, namely discovering NF approximation guarantees. Code to be provided after review.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员