Elasticity plays an important role in modern cloud computing systems. Elastic computing allows virtual machines (i.e., computing nodes) to be preempted when high-priority jobs arise, and also allows new virtual machines to participate in the computation. In 2018, Yang et al. introduced Coded Storage Elastic Computing (CSEC) to address the elasticity using coding technology, with lower storage and computation load requirements. However, CSEC is limited to certain types of computations (e.g., linear) due to the coded data storage based on linear coding. Then Centralized Uncoded Storage Elastic Computing (CUSEC) with heterogeneous computation speeds was proposed, which directly copies parts of data into the virtual machines. In all existing works in elastic computing, the storage assignment is centralized, meaning that the number and identity of all virtual machines possible used in the whole computation process are known during the storage assignment. In this paper, we consider Decentralized Uncoded Storage Elastic Computing (DUSEC) with heterogeneous computation speeds, where any available virtual machine can join the computation which is not predicted and thus coordination among different virtual machines' storage assignments is not allowed. Under a decentralized storage assignment originally proposed in coded caching by Maddah-Ali and Niesen, we propose a computing scheme with closed-form optimal computation time. We also run experiments over MNIST dataset with Softmax regression model through the Tencent cloud platform, and the experiment results demonstrate that the proposed DUSEC system approaches the state-of-art best storage assignment in the CUSEC system in computation time.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
25+阅读 · 2021年6月25日
Arxiv
36+阅读 · 2019年11月7日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员