This study uses double/debiased machine learning (DML) to evaluate the impact of transitioning from lecture-based blended teaching to a flipped classroom concept. Our findings indicate effects on students' self-conception, procrastination, and enjoyment. We do not find significant positive effects on exam scores, passing rates, or knowledge retention. This can be explained by the insufficient use of the instructional approach that we can identify with uniquely detailed usage data and highlights the need for additional teaching strategies. Methodologically, we propose a powerful DML approach that acknowledges the latent structure inherent in Likert scale variables and, hence, aligns with psychometric principles.
翻译:暂无翻译