The conditional survival function of a time-to-event outcome subject to censoring and truncation is a common target of estimation in survival analysis. This parameter may be of scientific interest and also often appears as a nuisance in nonparametric and semiparametric problems. In addition to classical parametric and semiparametric methods (e.g., based on the Cox proportional hazards model), flexible machine learning approaches have been developed to estimate the conditional survival function. However, many of these methods are either implicitly or explicitly targeted toward risk stratification rather than overall survival function estimation. Others apply only to discrete-time settings or require inverse probability of censoring weights, which can be as difficult to estimate as the outcome survival function itself. Here, we employ a decomposition of the conditional survival function in terms of observable regression models in which censoring and truncation play no role. This allows application of an array of flexible regression and classification methods rather than only approaches that explicitly handle the complexities inherent to survival data. We outline estimation procedures based on this decomposition, empirically assess their performance, and demonstrate their use on data from an HIV vaccine trial.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员