Neural collapse describes the geometry of activation in the final layer of a deep neural network when it is trained beyond performance plateaus. Open questions include whether neural collapse leads to better generalization and, if so, why and how training beyond the plateau helps. We model neural collapse as an information bottleneck (IB) problem in order to investigate whether such a compact representation exists and discover its connection to generalization. We demonstrate that neural collapse leads to good generalization specifically when it approaches an optimal IB solution of the classification problem. Recent research has shown that two deep neural networks independently trained with the same contrastive loss objective are linearly identifiable, meaning that the resulting representations are equivalent up to a matrix transformation. We leverage linear identifiability to approximate an analytical solution of the IB problem. This approximation demonstrates that when class means exhibit $K$-simplex Equiangular Tight Frame (ETF) behavior (e.g., $K$=10 for CIFAR10 and $K$=100 for CIFAR100), they coincide with the critical phase transitions of the corresponding IB problem. The performance plateau occurs once the optimal solution for the IB problem includes all of these phase transitions. We also show that the resulting $K$-simplex ETF can be packed into a $K$-dimensional Gaussian distribution using supervised contrastive learning with a ResNet50 backbone. This geometry suggests that the $K$-simplex ETF learned by supervised contrastive learning approximates the optimal features for source coding. Hence, there is a direct correspondence between optimal IB solutions and generalization in contrastive learning.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年7月9日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
15+阅读 · 2020年12月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
0+阅读 · 2023年7月9日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
15+阅读 · 2020年12月17日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员