We introduce the Boltzmann-Shannon Index (BSI), a normalized measure for clustered continuous data that captures the interaction between frequency-based and geometry-based probability distributions. Building on ideas from geometric coarse-graining and information theory, the BSI quantifies how well a partition reflects both the population of each cluster and its effective geometric extent. We illustrate its behavior on synthetic Gaussian mixtures, the Iris benchmark, and a high-imbalance resource-allocation scenario, showing that the index provides a coherent assessment even when traditional metrics give incomplete or misleading signals. Moreover, in resource-allocation settings, we demonstrate that BSI not only detects severe density-geometry inconsistency with high sensitivity, but also offers a smooth, optimization-ready objective that naturally favors allocations balancing demographic weight with each group's effective spread in the outcome space, while providing a smooth, gradient-friendly regularizer that can be easily embedded in modern policy-making and algorithmic governance optimization frameworks.


翻译:本文提出玻尔兹曼-香农指数(BSI),一种针对聚类连续数据的归一化度量指标,用于捕捉基于频率的概率分布与基于几何的概率分布之间的相互作用。基于几何粗粒化与信息论的思想,BSI量化了数据划分在反映各簇样本数量及其有效几何范围方面的表现。我们通过合成高斯混合模型、Iris基准数据集以及高不平衡资源分配场景展示了该指数的特性,结果表明即使在传统指标给出不完整或误导性信号时,该指数仍能提供一致的评估。此外,在资源分配场景中,我们证明BSI不仅能够以高灵敏度检测严重的密度-几何不一致性,还提供了一个平滑、易于优化的目标函数,该函数天然倾向于平衡人口统计权重与各群体在结果空间中有效分布的分配方案,同时作为一个平滑、梯度友好的正则化项,可轻松嵌入现代政策制定与算法治理优化框架中。

0
下载
关闭预览

相关内容

【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
24+阅读 · 2022年2月27日
专知会员服务
12+阅读 · 2021年7月13日
专知会员服务
23+阅读 · 2021年6月22日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
24+阅读 · 2022年2月27日
专知会员服务
12+阅读 · 2021年7月13日
专知会员服务
23+阅读 · 2021年6月22日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员