In this position paper, we propose researching the combination of Augmented Reality (AR) and Artificial Intelligence (AI) to support conversations, inspired by the interfaces of dialogue systems commonly found in videogames. AR-capable devices are becoming more powerful and conventional in looks, as seen in head-mounted displays (HMDs) like the Snapchat Spectacles, the XREAL glasses, or the recently presented Meta Orion. This development reduces possible ergonomic, appearance, and runtime concerns, thus allowing a more straightforward integration and extended use of AR in our everyday lives, both in private and at work. At the same time, we can observe an immense surge in AI development (also at CHI). Recently notorious Large Language Models (LLMs) like OpenAI's o3-mini or DeepSeek-R1 soar over their precursors in their ability to sustain conversations, provide suggestions, and handle complex topics in (almost) real time. In combination with natural language recognition systems, which are nowadays a standard component of smartphones and similar devices (including modern AR-HMDs), it is easy to imagine a combined system that integrates into daily conversations and provides various types of assistance. Such a system would enable many opportunities for research in AR+AI, which, as stated by Hirzle et al., remains scarce. In the following, we describe how the design of a conversational AR+AI system can learn from videogame dialogue systems, and we propose use cases and research questions that can be investigated thanks to this AR+AI combination.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
25+阅读 · 2020年3月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员