The $\Sigma$-QMAC problem is introduced, involving $S$ servers, $K$ classical ($\mathbb{F}_d$) data streams, and $T$ independent quantum systems. Data stream ${\sf W}_k, k\in[K]$ is replicated at a subset of servers $\mathcal{W}(k)\subset[S]$, and quantum system $\mathcal{Q}_t, t\in[T]$ is distributed among a subset of servers $\mathcal{E}(t)\subset[S]$ such that Server $s\in\mathcal{E}(t)$ receives subsystem $\mathcal{Q}_{t,s}$ of $\mathcal{Q}_t=(\mathcal{Q}_{t,s})_{s\in\mathcal{E}(t)}$. Servers manipulate their quantum subsystems according to their data and send the subsystems to a receiver. The total download cost is $\sum_{t\in[T]}\sum_{s\in\mathcal{E}(t)}\log_d|\mathcal{Q}_{t,s}|$ qudits, where $|\mathcal{Q}|$ is the dimension of $\mathcal{Q}$. The states and measurements of $(\mathcal{Q}_t)_{t\in[T]}$ are required to be separable across $t\in[T]$ throughout, but for each $t\in[T]$, the subsystems of $\mathcal{Q}_{t}$ can be prepared initially in an arbitrary (independent of data) entangled state, manipulated arbitrarily by the respective servers, and measured jointly by the receiver. From the measurements, the receiver must recover the sum of all data streams. Rate is defined as the number of dits ($\mathbb{F}_d$ symbols) of the desired sum computed per qudit of download. The capacity of $\Sigma$-QMAC, i.e., the supremum of achievable rates is characterized for arbitrary data replication and entanglement distribution maps $\mathcal{W}, \mathcal{E}$. Coding based on the $N$-sum box abstraction is optimal in every case. Notably, for every $S\neq 3$ there exists an instance of the $\Sigma$-QMAC where $S$-party entanglement is necessary to achieve the fully entangled capacity.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员