In the area of query complexity of Boolean functions, the most widely studied cost measure of an algorithm is the worst-case number of queries made by it on an input. Motivated by the most natural cost measure studied in online algorithms, the competitive ratio, we consider a different cost measure for query algorithms for Boolean functions that captures the ratio of the cost of the algorithm and the cost of an optimal algorithm that knows the input in advance. The cost of an algorithm is its largest cost over all inputs. Grossman, Komargodski and Naor [ITCS'20] introduced this measure for Boolean functions, and dubbed it instance complexity. Grossman et al. showed, among other results, that monotone Boolean functions with instance complexity 1 are precisely those that depend on one or two variables. We complement the above-mentioned result of Grossman et al. by completely characterizing the instance complexity of symmetric Boolean functions. As a corollary we conclude that the only symmetric Boolean functions with instance complexity 1 are the Parity function and its complement. We also study the instance complexity of some graph properties like Connectivity and k-clique containment. In all the Boolean functions we study above, and those studied by Grossman et al., the instance complexity turns out to be the ratio of query complexity to minimum certificate complexity. It is a natural question to ask if this is the correct bound for all Boolean functions. We show a negative answer in a very strong sense, by analyzing the instance complexity of the Greater-Than and Odd-Max-Bit functions. We show that the above-mentioned ratio is linear in the input size for both of these functions, while we exhibit algorithms for which the instance complexity is a constant.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月8日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员