We present ${\rm poly\log\log n}$-round randomized distributed algorithms to compute vertex splittings, a partition of the vertices of a graph into $k$ parts such that a node of degree $d(u)$ has $\approx d(u)/k$ neighbors in each part. Our techniques can be seen as the first progress towards general ${\rm poly\log\log n}$-round algorithms for the Lov\'asz Local Lemma. As the main application of our result, we obtain a randomized ${\rm poly\log\log n}$-round CONGEST algorithm for $(1+\epsilon)\Delta$-edge coloring $n$-node graphs of sufficiently large constant maximum degree $\Delta$, for any $\epsilon>0$. Further, our results improve the computation of defective colorings and certain tight list coloring problems. All the results improve the state-of-the-art round complexity exponentially, even in the LOCAL model.


翻译:我们提出了 $ rm 多元\ log\ log n} 圆形随机分布算法, 用于计算顶点分割, 将图表的顶部分割成 $k$ 部分, 这样每个部分的节点 $d( u) 都有 $ approx d( u) / k$ 邻居 。 我们的技术可以被视为 任何 $\ perm ollog\ log n} 通用的 $ pool logn $ roup 运算法的第一个进步。 作为我们结果的主要应用, 我们获得了一个随机化的 $ rm pool\ log\ log n} 。 整个 CONEST 算法, $ ( 1 ⁇ ipslon)\ Delta $- edge $n- node 图形, 足够恒定最大 $\ delta$@ 0 $。 此外, 我们的计算结果可以改进对有缺陷的颜色和某些严格列表问题的计算方法。 所有结果都会模型都改善了 。 。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月4日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员