In this paper, we estimate the seroprevalence against COVID-19 by country and derive the seroprevalence over the world. To estimate seroprevalence, we use serological surveys (also called the serosurveys) conducted within each country. When the serosurveys are incorporated to estimate world seroprevalence, there are two issues. First, there are countries in which a serological survey has not been conducted. Second, the sample collection dates differ from country to country. We attempt to tackle these problems using the vaccination data, confirmed cases data, and national statistics. We construct Bayesian models to estimate the numbers of people who have antibodies produced by infection or vaccination separately. For the number of people with antibodies due to infection, we develop a hierarchical model for combining the information included in both confirmed cases data and national statistics. At the same time, we propose regression models to estimate missing values in the vaccination data. As of 31st of July 2021, using the proposed methods, we obtain the 95% credible interval of the world seroprevalence as [38.6%, 59.2%].


翻译:在本文中,我们按国家对COVID-19的血清阳性反应率进行估计,并得出全世界血清阳性反应率。为了估计血清阳性反应率,我们使用每个国家进行的血清调查(也称为血清调查)进行。当血清调查被纳入对世界血清反应率的估计时,有两个问题。第一,有些国家还没有进行血清调查。第二,抽样收集日期因国家而异。我们试图利用疫苗接种数据、确诊病例数据和国家统计数据来解决这些问题。我们建造了巴伊西亚模型,以分别估计感染或接种后产生抗体的人数。关于感染后患抗体的人数,我们开发了一种等级模型,以综合确诊病例数据和国家统计数据中的信息。与此同时,我们提出了在疫苗接种数据中估计缺失值的回归模型。从2021年7月31日起,我们采用拟议方法,我们获得了95%的世界血清阳性反应的可靠间隔,即[38.6%,59.2%]。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员