The continuous quadratures of a single mode of the light field present a promising avenue to encode quantum information. By virtue of the infinite dimensionality of the associated Hilbert space, quantum states of these continuous variables (CV) can enable higher communication rates compared to single photon-based qubit encodings. Quantum repeater protocols that are essential to extend the range of quantum communications at enhanced rates over direct transmission have also been recently proposed for CV quantum encodings. Here we present a quantum repeating switch for CV quantum encodings that caters to multiple communication flows. The architecture of the switch is based on quantum light sources, detectors, memories, and switching fabric, and the routing protocol is based on a Max-Weight scheduling policy that is throughput optimal. We present numerical results on an achievable bipartite entanglement request rate region for multiple CV entanglement flows that can be stably supported through the switch. We elucidate our results with the help of exemplary 3-flow networks.


翻译:光场单一模式的连续二次曲线为编码量子信息提供了一个充满希望的渠道。由于相关Hilbert空间的无限维度,这些连续变量的量子状态能够使通信率高于单一光子的qubit编码。最近也为CV量子编码提议了量子中继器协议,这对于以高于直接传输的速度扩大量子通信范围至关重要。在这里,我们为CV量子编码提供了一个量子重复开关,该量子编码适合多种通信流。开关的结构基于量子光源、探测器、记忆和交换布料,而路由协议的基础是最优化的Max-Weight排期政策。我们展示了可实现的多个CV缠绕波区域的数字结果,通过开关可以刺入支持。我们用典型的3流量网络来解释我们的结果。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Programming with Quantum Mechanics
Arxiv
0+阅读 · 2022年10月27日
Arxiv
2+阅读 · 2022年10月25日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关论文
Programming with Quantum Mechanics
Arxiv
0+阅读 · 2022年10月27日
Arxiv
2+阅读 · 2022年10月25日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员