A combinatorial problem concerning the maximum size of the (hamming) weight set of an $[n,k]_q$ linear code was recently introduced. Codes attaining the established upper bound are the Maximum Weight Spectrum (MWS) codes. Those $[n,k]_q $ codes with the same weight set as $ \mathbb{F}_q^n $ are called Full Weight Spectrum (FWS) codes. FWS codes are necessarily ``short", whereas MWS codes are necessarily ``long". For fixed $ k,q $ the values of $ n $ for which an $ [n,k]_q $-FWS code exists are completely determined, but the determination of the minimum length $ M(H,k,q) $ of an $ [n,k]_q $-MWS code remains an open problem. The current work broadens discussion first to general coordinate-wise weight functions, and then specifically to the Lee weight and a Manhattan like weight. In the general case we provide bounds on $ n $ for which an FWS code exists, and bounds on $ n $ for which an MWS code exists. When specializing to the Lee or to the Manhattan setting we are able to completely determine the parameters of FWS codes. As with the Hamming case, we are able to provide an upper bound on $ M(\mathcal{L},k,q) $ (the minimum length of Lee MWS codes), and pose the determination of $ M(\mathcal{L},k,q) $ as an open problem. On the other hand, with respect to the Manhattan weight we completely determine the parameters of MWS codes.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员