The metric tensor of a Riemannian manifold can be approximated using Regge finite elements and such approximations can be used to compute approximations to the Gauss curvature and the Levi-Civita connection of the manifold. It is shown that certain Regge approximations yield curvature and connection approximations that converge at a higher rate than previously known. The analysis is based on covariant (distributional) curl and incompatibility operators which can be applied to piecewise smooth matrix fields whose tangential-tangential component is continuous across element interfaces. Using the properties of the canonical interpolant of the Regge space, we obtain superconvergence of approximations of these covariant operators. Numerical experiments further illustrate the results from the error analysis.


翻译:使用 Regge 有限元素可以近似Riemannian 元体的光度强。 这种近似值可用于计算高斯曲线的近似值和多元体的Levi-Civita 连接。 显示某些 Regge 近似值的曲线和连接近似值比以前已知的要高。 分析基于共变( 分布) 卷曲和不兼容操作器, 它可以应用于元素界面相近- 切异部分连续的平滑矩阵字段。 我们利用Regge 空间的共振间插特性, 获得了这些共变操作器近似值的超级一致。 数字实验进一步说明了错误分析的结果 。

0
下载
关闭预览

相关内容

专知会员服务
162+阅读 · 2020年1月16日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月5日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员