A recent paper by Farina & Pipis (2023) established the existence of uncoupled no-linear-swap regret dynamics with polynomial-time iterations in extensive-form games. The equilibrium points reached by these dynamics, known as linear correlated equilibria, are currently the tightest known relaxation of correlated equilibrium that can be learned in polynomial time in any finite extensive-form game. However, their properties remain vastly unexplored, and their computation is onerous. In this paper, we provide several contributions shedding light on the fundamental nature of linear-swap regret. First, we show a connection between linear deviations and a generalization of communication deviations in which the player can make queries to a "mediator" who replies with action recommendations, and, critically, the player is not constrained to match the timing of the game as would be the case for communication deviations. We coin this latter set the untimed communication (UTC) deviations. We show that the UTC deviations coincide precisely with the linear deviations, and therefore that any player minimizing UTC regret also minimizes linear-swap regret. We then leverage this connection to develop state-of-the-art no-regret algorithms for computing linear correlated equilibria, both in theory and in practice. In theory, our algorithms achieve polynomially better per-iteration runtimes; in practice, our algorithms represent the state of the art by several orders of magnitude.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员