One class of statistical hypothesis testing procedures is the indisputable equivalence tests, whose main objective is to establish practical equivalence rather than the usual statistical significant difference. These hypothesis tests are prone in bioequivalence studies, where one would wish to show that, for example, an existing drug and a new one under development have the same therapeutic effect. In this article, we consider a two-stage randomized (RAND2) p-value utilizing the uniformly most powerful (UMP) p-value in the first stage when multiple two-one-sided hypotheses are of interest. We investigate the behavior of the distribution functions of the two p-values when there are changes in the boundaries of the null or alternative hypothesis or when the chosen parameters are too close to these boundaries. We also consider the behavior of the power functions to an increase in sample size. Specifically, we investigate the level of conservativity to the sample sizes to see if we control the type I error rate when using either of the two p-values for any sample size. In multiple tests, we evaluate the performance of the two p-values in estimating the proportion of true null hypotheses. We conduct a family-wise error rate control using an adaptive Bonferroni procedure with a plug-in estimator to account for the multiplicity that arises from the multiple hypotheses under consideration. We verify the various claims in this research using simulation study and real-world data analysis.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月15日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员