In this paper we present a model of the stock exchange domain using symbolic dataanalysis and we use the SODAS software to analyze this domain. After a short presentationof the software, we present the analysis in three steps: choice of the symbolic objects, theirdefinition and their analysis with SODAS. We give details for each of these steps and thereimportance is underlined. Two examples of results are described to show the analysis interestand pertinence. The conclusion describes perspectives after the improvement of SODAS forits application in the stock exchange domain.


翻译:在本文中,我们用象征性数据分析提出一个证券交易所域模型,我们使用SODAS软件分析这个域。在简短介绍软件之后,我们分三个步骤提出分析:选择象征性对象、其定义和与SODAS的分析。我们着重说明每个步骤的细节和重要性。我们用两个例子说明分析结果,以显示分析的利害关系和相关性。结论描述了SODAS在证券交易所域应用SODAS后的各种观点。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
130+阅读 · 2023年1月29日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
95+阅读 · 2022年8月2日
An Attentive Survey of Attention Models
Arxiv
44+阅读 · 2020年12月15日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关VIP内容
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
130+阅读 · 2023年1月29日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
相关论文
Arxiv
95+阅读 · 2022年8月2日
An Attentive Survey of Attention Models
Arxiv
44+阅读 · 2020年12月15日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员