Since the proposal of transformers, these models have been limited to bounded input lengths, because of their need to attend to every token in the input. In this work, we propose Unlimiformer: a general approach that wraps any existing pretrained encoder-decoder transformer, and offloads the cross-attention computation to a single k-nearest-neighbor (kNN) index, while the returned kNN distances are the attention dot-product scores. This kNN index can be kept on either the GPU or CPU memory and queried in sub-linear time; this way, we can index practically unlimited input sequences, while every attention head in every decoder layer retrieves its top-k keys, instead of attending to every key. We evaluate Unlimiformer on several long-document and book-summarization benchmarks, showing that it can process even 500k token-long inputs from the BookSum dataset, without any input truncation at test time. We demonstrate that Unlimiformer improves pretrained models such as BART and Longformer by extending them to unlimited inputs without additional learned weights and without modifying their code. We make our code and models publicly available at https://github.com/abertsch72/unlimiformer .


翻译:暂无翻译

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
325+阅读 · 2020年11月26日
专知会员服务
46+阅读 · 2020年10月5日
Transformer文本分类代码
专知会员服务
118+阅读 · 2020年2月3日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
11+阅读 · 2023年3月8日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
325+阅读 · 2020年11月26日
专知会员服务
46+阅读 · 2020年10月5日
Transformer文本分类代码
专知会员服务
118+阅读 · 2020年2月3日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员