We revisit the original approach of using deep learning and neural networks to solve differential equations by incorporating the knowledge of the equation. This is done by adding a dedicated term to the loss function during the optimization procedure in the training process. The so-called physics-informed neural networks (PINNs) are tested on a variety of academic ordinary differential equations in order to highlight the benefits and drawbacks of this approach with respect to standard integration methods. We focus on the possibility to use the least possible amount of data into the training process. The principles of PINNs for solving differential equations by enforcing physical laws via penalizing terms are reviewed. A tutorial on a simple equation model illustrates how to put into practice the method for ordinary differential equations. Benchmark tests show that a very small amount of training data is sufficient to predict the solution when the non linearity of the problem is weak. However, this is not the case in strongly non linear problems where a priori knowledge of training data over some partial or the whole time integration interval is necessary.


翻译:我们通过在训练过程中在损失函数中添加专门的项来回顾使用深度学习和神经网络求解微分方程的原始方法。所谓的物理学认知神经网络 (PINNs) 在多种学术普通微分方程中进行了测试,以凸显与标准积分方法相比,这种方法的优点和缺点。我们关注使用尽可能少的数据进入训练过程的可能性。梳理了通过通过惩罚项来强制物理定律求解微分方程的 PINNs 的原理。通过对一个简单的方程模型的教程来演示如何将这种方法应用于普通微分方程。基准测试表明,在问题的非线性性较弱时,仅需要很少的训练数据就足以预测解。然而,在问题的非常非线性时,需要先验知识,包括在部分或整个时间积分间隔内的训练数据。

0
下载
关闭预览

相关内容

基准测试是指通过设计科学的测试方法、测试工具和测试系统,实现对一类测试对象的某项性能指标进行定量的和可对比的测试。
专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
19+阅读 · 2022年7月29日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员