Modular arithmetic, particularly modular reduction, is widely used in cryptographic applications such as homomorphic encryption (HE) and zero-knowledge proofs (ZKP). High-bit-width operations are crucial for enhancing security; however, they are computationally intensive due to the large number of modular operations required. The lookup-table-based (LUT-based) approach, a ``space-for-time'' technique, reduces computational load by segmenting the input number into smaller bit groups, pre-computing modular reduction results for each segment, and storing these results in LUTs. While effective, this method incurs significant hardware overhead due to extensive LUT usage. In this paper, we introduce ALLMod, a novel approach that improves the area efficiency of LUT-based large-number modular reduction by employing hybrid workloads. Inspired by the iterative method, ALLMod splits the bit groups into two distinct workloads, achieving lower area costs without compromising throughput. We first develop a template to facilitate workload splitting and ensure balanced distribution. Then, we conduct design space exploration to evaluate the optimal timing for fusing workload results, enabling us to identify the most efficient design under specific constraints. Extensive evaluations show that ALLMod achieves up to $1.65\times$ and $3\times$ improvements in area efficiency over conventional LUT-based methods for bit-widths of $128$ and $8,192$, respectively.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员