We study the online overlapping batch-means covariance estimator for Stochastic Gradient Descent (SGD) under Markovian sampling. We show that the convergence rates of the covariance estimator are $O\big(\sqrt{d}\,n^{-1/8}(\log n)^{1/4}\big)$ and $O\big(\sqrt{d}\,n^{-1/8}\big)$ under state-dependent and state-independent Markovian sampling, respectively, with $d$ representing dimensionality and $n$ denoting the number of observations or SGD iterations. Remarkably, these rates match the best-known convergence rate previously established for the independent and identically distributed ($\iid$) case by \cite{zhu2021online}, up to logarithmic factors. Our analysis overcomes significant challenges that arise due to Markovian sampling, leading to the introduction of additional error terms and complex dependencies between the blocks of the batch-means covariance estimator. Moreover, we establish the convergence rate for the first four moments of the $\ell_2$ norm of the error of SGD dynamics under state-dependent Markovian data, which holds potential interest as an independent result. To validate our theoretical findings, we provide numerical illustrations to derive confidence intervals for SGD when training linear and logistic regression models under Markovian sampling. Additionally, we apply our approach to tackle the intriguing problem of strategic classification with logistic regression, where adversaries can adaptively modify features during the training process to increase their chances of being classified in a specific target class.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员