There are many frameworks for deep generative modeling, each often presented with their own specific training algorithms and inference methods. We present a short note on the connections between existing deep generative models and the GFlowNet framework, shedding light on their overlapping traits and providing a unifying viewpoint through the lens of learning with Markovian trajectories. This provides a means for unifying training and inference algorithms, and provides a route to construct an agglomeration of generative models.


翻译:有许多深层基因模型框架,每个框架都往往以自己的具体培训算法和推理方法提出。 我们简短地介绍了现有深层基因模型与GFlowNet框架之间的联系,阐明了这些模型的重叠特征,并通过与Markovian轨迹的学习透镜提供了统一观点。 这为统一培训和推理算法提供了一种手段,并为构建基因模型聚合提供了一条途径。

0
下载
关闭预览

相关内容

在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。条件概率分布可以由生成模型根据贝叶斯定理形成。
专知会员服务
90+阅读 · 2021年6月29日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Arxiv
1+阅读 · 2022年10月20日
Arxiv
1+阅读 · 2022年10月19日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员