An aperiodic binary sequence of length $\ell$ is a doubly infinite sequence $f=\ldots,f_{-1},f_0,f_1,\ldots$ with $f_j \in \{-1,1\}$ when $0 \leq j < \ell$ and and $f_j=0$ otherwise. Various problems in engineering and natural science demand binary sequences that do not resemble translates of themselves. The autocorrelation of $f$ at shift $s$ is the dot product of $f$ with the sequence obtained by translating $f$ by $s$ places. The demerit factor of $f$ is the sum of the squares of the autocorrelations at all nonzero shifts for the sequence obtained by normalizing $f$ to unit Euclidean norm. Low demerit factor therefore indicates low self-similarity under translation. We endow the $2^\ell$ binary sequences of length $\ell$ with uniform probability measure and consider the distribution of their demerit factors. Earlier works used combinatorial techniques to find exact formulas for the mean, variance, skewness, and kurtosis of the distribution as a function of $\ell$. These revealed that for $\ell \geq 4$, the $p$th central moment of this distribution is strictly positive for every $p \geq 2$. This article shows that every $p$th central moment is a quasi-polynomial function of $\ell$ with rational coefficients divided by $\ell^{2 p}$. It also shows that, in the limit as $\ell$ tends to infinity, the $p$th standardized moment is the same as that of the standard normal distribution.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2024年5月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员