In hybrid traffic environments where human-driven vehicles (HDVs) and autonomous vehicles (AVs) coexist, achieving safe and robust decision-making for AV platooning remains a complex challenge. Existing platooning systems often struggle with dynamic formation management and adaptability, especially in unpredictable, mixed-traffic conditions. To enhance autonomous vehicle platooning within these hybrid environments, this paper presents TriCoD, a twin-world safety-enhanced Data-Model-Knowledge Triple-Driven Cooperative Decision-making Framework. This framework integrates deep reinforcement learning (DRL) with model-driven approaches, enabling dynamic formation dissolution and reconfiguration through a safety-prioritized twin-world deduction mechanism. The DRL component augments traditional model-driven methods, enhancing both safety and operational efficiency, especially under emergency conditions. Additionally, an adaptive switching mechanism allows the system to seamlessly shift between data-driven and model-driven strategies based on real-time traffic demands, thereby optimizing decision-making ability and adaptability. Simulation experiments and hardware-in-the-loop tests demonstrate that the proposed framework significantly improves safety, robustness, and flexibility. A detailed account of the validation results for the model can be found in \href{https://perfectxu88.github.io/towardssafeandrobust.github.io/}{Our Website}.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员