Social influence is a strong determinant of food consumption, which in turn influences health. Although consistent observations have been made on the role of social factors in driving similarities in food consumption, much less is known about the precise governing mechanisms. We study social influence on food choice through carefully designed causal analyses, leveraging the sequential nature of shop queues on a major university campus. In particular, we consider a large number of adjacent purchases where a focal user immediately follows another user ("partner") in the checkout queue and both make a purchase. Identifying the partner's impact on the focal user, we find strong evidence of a specific behavioral mechanism for how dietary similarities between individuals arise: purchasing mimicry, a phenomenon where the focal user copies the partner's purchases. For instance, across food additions purchased during lunchtime together with a meal, we find that the focal user is significantly more likely to purchase the food item when the partner buys the item, v.s. when the partner does not, increasing the purchasing probability by 14% in absolute terms, or by 83% in relative terms. The effect is observed across all food types, but largest for condiments, and smallest for soft drinks. We find that no such effect is observed when a focal user is compared to a random (rather than directly preceding) partner. Furthermore, purchasing mimicry is present across age, gender, and status subpopulations, but strongest for students and the youngest persons. Finally, we find a dose-response relationship whereby mimicry decreases as proximity in the purchasing queue decreases. The results of this study elucidate the behavioral mechanism of purchasing mimicry and have further implications for understanding and improving dietary behaviors on campus.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月15日
Arxiv
14+阅读 · 2021年7月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员