Bond Centered FingerPrint (BCFP) are a complementary, bond-centric alternative to Extended-Connectivity Fingerprints (ECFP). We introduce a static BCFP that mirrors the bond-convolution used by directed message-passing GNNs like ChemProp, and evaluate it with a fast rapid Random Forest model on Brain-Blood Barrier Penetration (BBBP) classification task. Across stratified cross-validation, concatenating ECFP with BCFP consistently improves AUROC and AUPRC over either descriptor alone, as confirmed by Turkey HSD multiple-comparison analysis. Among radii, r = 1 performs best; r = 2 does not yield statistically separable gains under the same test. We further propose BCFP-Sort&Slice, a simple feature-combination scheme that preserves the out-of-vocabulary (OOV) count information native to ECFP count vectors while enabling compact unhashed concatenation of BCFP variants. We also outperform the MGTP prediction on our BBBP evaluation, using such composite new features bond and atom features. These results show that lightweight, bond-centered descriptors can complement atom-centered circular fingerprints and provide strong, fast baselines for BBBP prediction.
翻译:暂无翻译