Centralized Software-Defined Networking (cSDN) offers flexible and programmable control of networks but suffers from scalability and reliability issues due to its reliance on centralized controllers. Decentralized SDN (dSDN) alleviates these concerns by distributing control across multiple local controllers, yet this architecture remains highly vulnerable to Distributed Denial-of-Service (DDoS) attacks. In this paper, we propose a novel detection and mitigation framework tailored for dSDN environments. The framework leverages lightweight port-level statistics combined with prompt engineering and in-context learning, enabling the DeepSeek-v3 Large Language Model (LLM) to classify traffic as benign or malicious without requiring fine-tuning or retraining. Once an anomaly is detected, mitigation is enforced directly at the attacker's port, ensuring that malicious traffic is blocked at their origin while normal traffic remains unaffected. An automatic recovery mechanism restores normal operation after the attack inactivity, ensuring both security and availability. Experimental evaluation under diverse DDoS attack scenarios demonstrates that the proposed approach achieves near-perfect detection, with 99.99% accuracy, 99.97% precision, 100% recall, 99.98% F1-score, and an AUC of 1.0. These results highlight the effectiveness of combining distributed monitoring with zero-training LLM inference, providing a proactive and scalable defense mechanism for securing dSDN infrastructures against DDoS threats.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员