Radars are widely used to obtain echo information for effective prediction, such as precipitation nowcasting. In this paper, recent relevant scientific investigation and practical efforts using Deep Learning (DL) models for weather radar data analysis and pattern recognition have been reviewed; particularly, in the fields of beam blockage correction, radar echo extrapolation, and precipitation nowcast. Compared to traditional approaches, present DL methods depict better performance and convenience but suffer from stability and generalization. In addition to recent achievements, the latest advancements and existing challenges are also presented and discussed in this paper, trying to lead to reasonable potentials and trends in this highly-concerned field.


翻译:雷达被广泛用于获取回声信息,以便进行有效预测,例如现在的降水预报; 本文审查了利用深学习模型进行气象雷达数据分析和模式识别的最新相关科学研究和实际努力; 特别是在梁阻隔校正、雷达回声外推法和现在播送的降水等领域; 与传统方法相比,目前的DL方法说明更好的性能和方便,但有稳定性和普遍性; 除了最近的成就外,本文件还介绍和讨论了最新进展和现有挑战,试图在这一高度受关注的领域产生合理的潜力和趋势。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
20+阅读 · 2020年6月8日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员