A widely used formulation for null hypotheses in the analysis of multivariate $d$-dimensional data is $\mathcal{H}_0: \boldsymbol{H} \boldsymbol{\theta} =\boldsymbol{y}$ with $\boldsymbol{H}$ $\in\mathbb{R}^{m\times d}$, $\boldsymbol{\theta}$ $\in \mathbb{R}^d$ and $\boldsymbol{y}\in\mathbb{R}^m$, where $m\leq d$. Here the unknown parameter vector $\boldsymbol{\theta}$ can, for example, be the expectation vector $\boldsymbol{\mu}$, a vector $\boldsymbol{\beta} $ containing regression coefficients or a quantile vector $\boldsymbol{q}$. Also, the vector of nonparametric relative effects $\boldsymbol{p}$ or an upper triangular vectorized covariance matrix $\textbf{v}$ are useful choices. However, even without multiplying the hypothesis with a scalar $\gamma\neq 0$, there is a multitude of possibilities to formulate the same null hypothesis with different hypothesis matrices $\boldsymbol{H}$ and corresponding vectors $\boldsymbol{y}$. Although it is a well-known fact that in case of $\boldsymbol{y}=\boldsymbol{0}$ there exists a unique projection matrix $\boldsymbol{P}$ with $\boldsymbol{H}\boldsymbol{\theta}=\boldsymbol{0}\Leftrightarrow \boldsymbol{P}\boldsymbol{\theta}=\boldsymbol{0}$, for $\boldsymbol{y}\neq \boldsymbol{0}$ such a projection matrix does not necessarily exist. Moreover, since such hypotheses are often investigated using a quadratic form as the test statistic, the corresponding projection matrices often contain zero rows; so, they are not even effective from a computational aspect. In this manuscript, we show that for the Wald-type-statistic (WTS), which is one of the most frequently used quadratic forms, the choice of the concrete hypothesis matrix does not affect the test decision. Moreover, some simulations are conducted to investigate the possible influence of the hypothesis matrix on the computation time.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
基于Lattice LSTM的命名实体识别
微信AI
48+阅读 · 2018年10月19日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月23日
VIP会员
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
基于Lattice LSTM的命名实体识别
微信AI
48+阅读 · 2018年10月19日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员