This paper develops the notion of \emph{Word Linear Complexity} ($WLC$) of vector valued sequences over finite fields $\ff$ as an extension of Linear Complexity ($LC$) of sequences and their ensembles. This notion of complexity extends the concept of the minimal polynomial of an ensemble (vector valued) sequence to that of a matrix minimal polynomial and shows that the matrix minimal polynomial can be used with iteratively generated vector valued sequences by maps $F:\ff^n\rightarrow\ff^n$ at a given $y$ in $\ff^n$ for solving the unique local inverse $x$ of the equation $y=F(x)$ when the sequence is periodic. The idea of solving a local inverse of a map in finite fields when the iterative sequence is periodic and its application to various problems of Cryptanalysis is developed in previous papers \cite{sule322, sule521, sule722,suleCAM22} using the well known notion of $LC$ of sequences. $LC$ is the degree of the associated minimal polynomial of the sequence. The generalization of $LC$ to $WLC$ considers vector valued (or word oriented) sequences such that the word oriented recurrence relation is obtained by matrix vector multiplication instead of scalar multiplication as considered in the definition of $LC$. Hence the associated minimal polynomial is matrix valued whose degree is called $WLC$. A condition is derived when a nontrivial matrix polynomial associated with the word oriented recurrence relation exists when the sequence is periodic. It is shown that when the matrix minimal polynomial exists $n(WLC)=LC$. Finally it is shown that the local inversion problem is solved using the matrix minimal polynomial when such a polynomail exists hence leads to a word oriented approach to local inversion.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员