Numerical simulations of models and theories that describe complex experimental systems $\unicode{x2014}$in fields like high-energy and condensed-matter physics$\unicode{x2014}$ are becoming increasingly important. Examples include lattice gauge theories, which can describe, among others, quantum chromodynamics (the Standard Model description of strong interactions between elementary particles), and spin-glass systems. Beyond fundamental research, these computational methods also find practical applications, among many others, in optimization, finance, and complex biological problems. However, Monte Carlo simulations, an important subcategory of these methods, are plagued by a major drawback: they are extremely greedy for (pseudo) random numbers. The total fraction of computer time dedicated to random-number generation increases as the hardware grows more sophisticated, and can get prohibitive for special-purpose computing platforms. We propose here a general-purpose microcanonical simulated annealing (MicSA) formalism that dramatically reduces such a burden. The algorithm is fully adapted to a massively parallel computation, as we show in the particularly demanding benchmark of the three-dimensional Ising spin glass. We carry out very stringent numerical tests of the new algorithm by comparing our results, obtained on GPUs, with high-precision standard (i.e., random-number-greedy) simulations performed on the Janus II custom-built supercomputer. In those cases where thermal equilibrium is reachable (i.e., in the paramagnetic phase), both simulations reach compatible values. More significantly, barring short-time corrections, a simple time rescaling suffices to map the MicSA off-equilibrium dynamics onto the results obtained with standard simulations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员