Spatial prediction refers to the estimation of unobserved values from spatially distributed observations. Although recent advances have improved the capacity to model diverse observation types, adoption in practice remains limited in industries that demand interpretability. To mitigate this gap, surrogate models that explain black-box predictors provide a promising path toward interpretable decision making. In this study, we propose a graph partitioning problem to construct spatial segments that minimize the sum of within-segment variances of individual predictions. The assignment of data points to segments can be formulated as a mixed-integer quadratic programming problem. While this formulation potentially enables the identification of exact segments, its computational complexity becomes prohibitive as the number of data points increases. Motivated by this challenge, we develop an approximation scheme that leverages the structural properties of graph partitioning. Experimental results demonstrate the computational efficiency of this approximation in identifying spatial segments.
翻译:暂无翻译