Order effects occur when judgments about a hypothesis's probability given a sequence of information do not equal the probability of the same hypothesis when the information is reversed. Different experiments have been performed in the literature that supports evidence of order effects. We proposed a Bayesian update model for order effects where each question can be thought of as a mini-experiment where the respondents reflect on their beliefs. We showed that order effects appear, and they have a simple cognitive explanation: the respondent's prior belief that two questions are correlated. The proposed Bayesian model allows us to make several predictions: (1) we found certain conditions on the priors that limit the existence of order effects; (2) we show that, for our model, the QQ equality is not necessarily satisfied (due to symmetry assumptions); and (3) the proposed Bayesian model has the advantage of possessing fewer parameters than its quantum counterpart.


翻译:当对假设的概率做出判断时,在信息被逆转时,根据一系列信息判断的概率并不等于同一假设的概率时,就会发生秩序效应。在支持定序效应证据的文献中已经进行了不同的实验。我们提出了巴耶斯式的顺序效应更新模型,其中每个问题都可以被视为一个小型实验,被调查者可以对自己的信仰进行反思。我们展示了定序效应,它们有一个简单的认知解释:被调查者先前认为两个问题相互关联。拟议的巴耶斯式模型允许我们作出若干预测:(1) 我们发现在前期的某些条件限制了定序效应的存在;(2) 我们表明,对于我们的模型来说,“平等”不一定得到满足(由于对称假设);(3) 拟议的巴伊西亚模式的优点是拥有的参数比数量对应的要少。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员