Demands for pneumatic-driven soft robots are constantly rising for various applications. However, they are often designed manually due to the lack of systematic methods. Moreover, design-dependent characteristics of pneumatic actuation pose distinctive challenges. This paper provides a compact MATLAB code, named SoRoTop, and its various extensions for designing pneumatic-driven soft robots using topology optimization. The code uses the method of moving asymptotes as the optimizer and builds upon the approach initially presented in Kumar et al.(Struct Multidiscip Optim 61 (4): 1637-1655, 2020). The pneumatic load is modeled using Darcy's law with a conceptualized drainage term. Consistent nodal loads are determined from the resultant pressure field using the conventional finite element approach. The robust formulation is employed, i.e., the eroded and blueprint design descriptions are used. A min-max optimization problem is formulated using the output displacements of the eroded and blueprint designs. A volume constraint is imposed on the blueprint design, while the eroded design is used to apply a conceptualized strain energy constraint. The latter constraint aids in attaining optimized designs that can endure the applied load without compromising their performance. Sensitivities required for optimization are computed using the adjoint-variable method. The code is explained in detail, and various extensions are also presented. It is structured into pre-optimization, MMA optimization, and post-optimization operations, each of which is comprehensively detailed. The paper also illustrates the impact of load sensitivities on the optimized designs. SoRoTop is provided in Appendix A and is available with extensions in the supplementary material and publicly at \url{https://github.com/PrabhatIn/SoRoTop}.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员