Recent paper "TVOR: Finding Discrete Total Variation Outliers Among Histograms" [arXiv:2012.11574] introduces the Total Variation Outlier Recognizer (TVOR) method for identification of outliers among a given set of histograms. The method relies on comparing the smoothness of each given histogram, given by its discrete total variation, to those of other histograms in the dataset, with the underlying assumption that most histograms in the data set should be of similar smoothness. The paper concludes by applying the TVOR model to histograms of ages of Holocaust victims produced using United States Holocaust Memorial Museum (USHMM) data, and purports to identify the list of victims of the Jasenovac concentration camp as potentially suspicious. In this paper, we show that the TVOR model and its assumptions are grossly inapplicable to the considered dataset. Namely, the dataset does not satisfy the model's critical assumption of the shared smoothness between distributions of the victims' ages across lists, the model is biased in assigning a higher outlier score to histograms of larger sizes, and the dataset has not been reviewed to remove obvious data processing errors, leading to duplication of hundreds of thousands of entries when performing the data analysis.


翻译:最近的论文“ TVOR: 在直方图中找到分辨的完全挥发性外向图像” [arXiv: 2012.11574] 介绍了在一组直方图中识别异常点的全变异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异色异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
325+阅读 · 2020年11月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月19日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员