In this paper, we explore how to schedule multiple users to optimize information freshness in a pull-based wireless network, where the status updates from users are requested by randomly arriving queries at the destination. We use the age of information at query (QAoI) to characterize the performance of information freshness. Such a decision-making problem is naturally modeled as a Markov decision process (MDP), which, however, is prohibitively high to be solved optimally by the standard method due to the curse of dimensionality. To address this issue, we employ Whittle index approach, which allows us to decouple the original MDP into multiple sub-MDPs by relaxing the scheduling constraints. However, the binary Markovian query arrival process results in a bi-dimensional state and complex state transitions within each sub-MDP, making it challenging to verify Whittle indexability using conventional methods. After a thorough analysis of the sub-MDP's structure, we show that it is unichain and its optimal policy follows a threshold-type structure. This facilitates the verification of Whittle indexability of the sub-MDP by employing an easy-to-verify condition. Subsequently, the steady-state probability distributions of the sub-MDP under different threshold-type policies are analyzed, constituting the analytical expressions of different Whittle indices in terms of the expected average QAoI and scheduling time of the sub-MDP. Building on these, we devise an efficient algorithm to calculate Whittle indices for the formulated sub-MDPs. The simulation results validate our analyses and show the proposed Whittle index policy outperforms baseline policies and achieves near-optimal performance.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员