With the popularity of wireless charging, energy access protection and cybersecurity are gaining importance, especially in public places. Currently, the most common energy encryption method uses frequency and associated impedance variation. However, we have proven that this method is not reliable, since a hacker can detect the changing frequency and adjust the compensation. However, the previously presented system needed time to follow the updated frequency, while encryption systems may vary the frequency faster to avoid energy theft. Furthermore, the previous system required an additional sensor coil. To solve these problems, we optimized the attack and the associated system, which can intrude and steal energy within 0.2 ms. The key is the elimination of the time-consuming maximum receiver current regulation. Also, we use the main receiving coil rather than any additional sensor antenna to detect the magnetic field. Thus, the new hardware is even simpler. A simulation model and experimental results demonstrate the fast response speed of the attack on encrypted wireless power and steal 65% of the power. Overall, the applicability of the attack is highly improved and leaves less room for hardening the encryption. The results demonstrate that energy access protection needs to be given great attention.
翻译:暂无翻译