We propose a spatial-constraint approach for modeling spatial-based interactions and enabling interactive visualizations, which involves the manipulation of visualizations through selection, filtering, navigation, arrangement, and aggregation. We proposes a system that activates static visualizations by adding intelligent interactions, which is achieved by associating static visual objects with forces. Our force-directed technique facilitates smooth animated transitions of the visualizations between different interaction states. We showcase the effectiveness of our technique through usage scenarios that involve activating visualizations in real-world settings.


翻译:我们提出了一种基于空间约束的方法来建模空间交互,并实现交互式可视化,其中涉及通过选择、过滤、导航、排列和聚合来操纵可视化。我们提出了一个系统,通过连接静态可视化对象与力来激活静态可视化,从而实现智能交互。我们的力导向技术可以平滑地将可视化在不同的交互状态之间进行动画转换。我们通过真实世界场景中的使用场景展示了我们技术的有效性。

0
下载
关闭预览

相关内容

《蜂群视角:作战管理系统中的蜂群态势感知》
专知会员服务
148+阅读 · 2023年3月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月10日
Arxiv
13+阅读 · 2022年4月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员