To efficiently scale large model (LM) training, researchers transition from data parallelism (DP) to hybrid parallelism (HP) on GPU clusters, which frequently experience hardware and software failures. Existing works introduce in-memory checkpointing optimizations that snapshot parameters to device memory for rapid failure recovery. However, these methods introduce severe resource competition between checkpointing and training, which can work under DP but can hardly scale under resource-intensive HP. To ensure low checkpointing overhead for hybrid-parallel training, this paper introduces a distributed in-memory checkpointing system with near-zero in-memory saving overhead. It strives from two aspects to mitigate the on-host resource competition caused by in-memory checkpointing: (1) It introduces Hierarchical Asynchronous Snapshotting Coordination in the checkpoint saving stage. This approach uses three-level asynchronous on-device scheduling to enhance parallelism between snapshotting and training, thereby minimizing snapshotting overhead. (2) It proposes Hybrid In-memory Checkpoint Protection to enhance checkpoint completeness during hardware failures. Unlike methods that require inter-node communications, which may block training under HP, it creates intra-node redundancy with efficient resource utilization, protecting training against hardware failures with minimal overhead. With these methods, this work enables fast restart for failed HP training with Distributed In-memory Checkpoint Loading, bypassing inefficiencies in NFS reads. In our evaluation, we achieve zero in-memory checkpoint saving overhead on Frontier while training Llama-2-34B on 256 MI250X devices (512 GPUs).


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员