Implicit neural representations have emerged as a powerful approach for encoding complex geometries as continuous functions. These implicit models are widely used in computer vision and 3D content creation, but their integration into scientific computing workflows, such as finite element or finite volume simulations, remains limited. One reason is that conventional simulation pipelines require explicit geometric inputs (meshes), forcing INR-based shapes to be converted to meshes--a step that introduces approximation errors, computational overhead, and significant manual effort. Immersed boundary methods partially alleviate this issue by allowing simulations on background grids without body-fitted meshes. However, they still require an explicit boundary description and can suffer from numerical artifacts, such as sliver cut cells. The shifted boundary method (SBM) eliminates the need for explicit geometry by using grid-aligned surrogate boundaries, making it inherently compatible with implicit shape representations. Here, we present a framework that directly couples neural implicit geometries with SBM to perform high-fidelity fluid flow simulations without any intermediate mesh generation. By leveraging neural network inference, our approach computes the surrogate boundary and distance vectors required by SBM on-the-fly directly from the INR, thus completely bypassing traditional geometry processing. We demonstrate this approach on canonical 2D and 3D flow benchmarks (lid-driven cavity flows) and complex geometries (gyroids, the Stanford bunny, and AI-generated shapes), achieving simulation accuracy comparable to conventional mesh-based methods. This work highlights a novel pathway for integrating AI-driven geometric representations into computational physics, establishing INRs as a versatile and scalable tool for simulations and removing a long-standing bottleneck in geometry handling.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
37+阅读 · 2021年8月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员