Complex-variable matrix optimization problems (CMOPs) in Frobenius norm emerge in many areas of applied mathematics and engineering applications. In this letter, we focus on solving CMOPs by iterative methods. For unconstrained CMOPs, we prove that the gradient descent (GD) method is feasible in the complex domain. Further, in view of reducing the computation complexity, constrained CMOPs are solved by a projection gradient descent (PGD) method. The theoretical analysis shows that the PGD method maintains a good convergence in the complex domain. Experiment results well support the theoretical analysis.


翻译:复杂的变量矩阵优化问题(CMOPs)在应用数学和工程应用领域中经常出现。在这封信中,我们专注于通过迭代方法解决CMOPs。对于无约束CMOPs,我们证明了梯度下降(GD)方法在复杂域中是可行的。此外,为了降低计算复杂度,受限制的CMOPs通过投影梯度下降(PGD)方法来解决。理论分析表明,PGD方法在复杂域中保持良好的收敛性。实验结果很好地支持了理论分析。

0
下载
关闭预览

相关内容

【经典书】凸优化:算法与复杂度,130页pdf
专知会员服务
81+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员